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1 c ' .  
SUMMARY 

The in t e rac t ion  of r a d i a l  and a x i a l  r a r e f a c t i o n  waves has been 

investigated by considering the expansion of a f i n i t e  length cy l in -  

d r i c a l  gas cloud i n t o  a vacuum. A numerical f i n i t e  d i f f e rence  scheme 

was used fo r  t h e  in t eg ra t ion  of t he  bas i c  conservation equations of 

gas dynamics. 

so lu t ion  of t h e  flow i n  the  "corner" regions of t he  cylinder.  

pe r f ec t  gas with 8 ~ 3  was assumed and numerical r e s u l t s  are given f o r  

t h ree  cases  of r ad ius  t o  half  length r a t i o s  greater than, equal t o  

and l e s s  than unity. 

studied, experimental observations such as cloud shapes and the  "indent- 

ations" made on witness p l a t e s  downstream of t h e  bumper are predicted by 

the  present r e s u l t s .  

A "toral" co-ordinate system was developed fo r  t h e  

A 

I n  s p i t e  of t h e  s impl i c i ty  of t h e  physical model 
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1.0 INTRODUCTION 

I n  the  e x i s t i n g  theo re t i ca l  s t u d i e s  of hypervelocity impact 

1 2 phenomena by Bjork and Walsh , t h e  exact impact model has been tackled  

and e labora te  computer codes have been developed t o  handle the  problem 

i n  i t s  en t i r e ty .  Apart from the  f a c t  t h a t  considerable t i m e  and e f f o r t  

must be spent i n  developing these computer codes, t h i s  approach a l s o  

s u f f e r s  t h e  disadvantage t h a t  it i s  not poss ib le  t o  determine the  

importance o f ,  o r  t h e  r o l e  played by, t h e  various fundamental processes 

i n  t h e  o v e r a l l  impact phenomenon. 

A physical  desc r ip t ion  of t h e  end-on impact of c y l i n d r i c a l  

p e l l e t s  with t h i n  bumper p l a t e s  has been given previously by Bull  . 
Subsequently, t he  fundamental processes of the  one-dimensional r a d i a l  

3 

and axial expansion of the  condensed state generated by t h e  impact 

shocks were studied i n  d e t a i l  . I n  t h e  present repor t ,  t he  r a d i a l  

and axial expansion processes a r e  coupled and the  i n t e r a c t i o n  of these  

two sets of r a r e f a c t i o n  waves ( L e .  r a d i a l  and a x i a l )  are investigated.  

4 

I n  t h e  present program of  t h e o r e t i c a l  s tud ie s  of  end-on impact 

of c y l i n d r i c a l  p e l l e t s  with t h i n  bumper p l a t e s ,  i t  was decided that a 

f r e s h  approach should be taken. The impact phenomenon was f i r s t  

analyzed and then broken down i n t o  various fundamental processes, s ince  

i t  was believed t h a t  more f r u i t f u l  r e s u l t s  and a b e t t e r  understanding 

of t he  problem could be achieved i n  t h i s  manner. 

processes were f i r s t  studied ind iv idua l ly  and then progressively coupled 

These physical 
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together  t o  form the  complete impact model. 

-- 

Upon ac tua l  meteoroid impact, i t  i s  assumed t h a t  t he  meteoroid 

and the  impacted area of bumper w i l l  be vaporized forming a cyl inder  

of  highly compressed gas. 

and begins t o  expand a s  the  r e s t r a in ing  medium i s  l e f t  behind. 

r epor t  is an attempt to  study ana ly t i ca l ly  the  expansion of t h i s  

This cyl inder  moves out  from the  bumper 

This 

compressed cyl inder  of gas. 

The physical model considered i s  the  expansion of a cy l ind r i ca l  

gas cloud of f i n i t e  s i ze ,  i n i t i a l l y  of diameter 112Eto11 and length I12Loq1. 

The cloud is  shown i n  Figs. 1.1 (a) and (b) a t  time t = 0 and a t  t i m e  

t > O  respectively.  

TIME t= 0 

Figure 1.1 (a)  
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Figure 1.1 (b) 

Depending on the  r a t i o  of  the  diameter t o  the  length of t he  

c y l i n d r i c a l  gas  cloud (Le .  %/Lo) t h e  in t e rac t ion  processes are 

d i f f e ren t .  For example, i f  %/L,< 1 (i.e. a long cy l inder )  t he  

r a d i a l  r a r e f a c t i o n  wave w i l l  a r r i v e  a t  the  axis of synuuetry before 

the  axial r a re fac t ion  waves (coming from the  two ends) meet. 

B"/Lo > 1 (i.e. a shor t  cyl inder) ,  the  reverse i s  true.  For a 

qcere cyl inder  (&/Lo = 1) both t h e  axial and r a d i a l  expansion 

waves converge at the  center simultaneously. 

' O / & <  1, 'O/Lo "1, and b/Lo>l) are studied i n  the  present  work. 

For 

A l l  th ree  cases (Le. 

The expansion processes are assumed t o  be i sen t ropic ,  with 

heat  t r a n s f e r ,  chemical and viscous e f f e c t s  being neglected. The 
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gas  cloud i s  taken t o  be uniform i n i t i a l l y ,  and i s  assumed t o  ac t  as 

a pe r fec t  gas with '6 = 3. 

The present problem, which involves two space co-ordinates a s  

well as one t i m e  co-ordinate, cannot be solved ana ly t i ca l ly .  

even f o r  unsteady one-dimensional c y l i n d r i c a l  o r  spher ica l  expansions, 

a n a l y t i c a l  so lu t ions  of t h e  s i m i l a r i t y  type exist only f o r  non-uniform 

gas  clouds with very spec ia l  i n i t i a l  dens i ty  d i s t r i b u t i o n s  . Instead, 

t h e  expanding f i n i t e  cy l inder  must be studied through exact numerical 

i n t eg ra t ion  of t he  basic conservation equations. There a r e  two pos- 

s i b l e  numerical methods t h a t  can be adopted, the  method of character-  

i s t ics  o r  a f i n i t e  d i f fe rence  scheme. When the  method of  character-  

i s t i c s  i s  used, t h e  ana lys i s  involved i s  extremely complex s ince  

c h a r a c t e r i s t i c  sur faces  r a the r  than  c h a r a c t e r i s t i c  l i n e s  have t o  be 

considered fo r  a two-dimensional problem. 

was therefore  used i n  the  present work. 

Indeed, 

5 

A f i n i t e  d i f f e rence  approach 

I 1  
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2.0 THEORETICAL ANALYSIS 

2.1 Basic Equations 

I n  the  absence of  heat t r a n s f e r  and viscous e f f e c t s ,  t he  

conservation equations can be wr i t t en  as 

Continui ty  

Energy E t ?  E+) = o  ( 2 . 3 )  
D t  Dt 
d 

where /3 , F ,  A ,  and v are the  densi ty ,  pressure,  energy and 

p a r t i c l e  ve loc i ty  respectively.  

- i s  the  convective t i m e  de r iva t ive  defined as 
D t  

For a pe r fec t  gas ,  t he  equation of s ta te  i s  given by 

Using Eq. 2.5, t h e  energy e q i i a t l ~ n  (E?. 2.3) becomes 

(2.4) 

(2.5) 

Eq. 2.6  merely s ta tes  t h a t  the  entropy f o r  each f l u i d  p a r t i c l e  remains 

constant.  Since the  expansion process i n  the  present problem i s  assumed 

t o  be i s en t rop ic  throughout, Eq. 2 . 6  i s  s a t i s f i e d  automatical ly  and the  
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con t inu i ty  and momentum equations a re  s u f f i c i e n t  f o r  t he  complete 

descr ip t ion  of t he  expansion processes. However, fo r  i sen t ropic  

flow, i t  i s  more convenient t o  use the  p a r t i c l e  ve loc i ty  and the  

loca l  sound speed a as the  dependent va r i ab le s  where a i s  de- 

f ined  by the  r e l a t ionsh ip  

The bas ic  equations now become 

-' L 

2 . 2  Flow Regions 

For the ana lys i s  of  the problem, only  one 

inder need be considered. 

I I 

I A P 1 D'\ 
I f  - - - - - - - -  --7- t- - 

Shape o f  Expanding Gas Cloud 

Figure 2 .1  

quar te r  of t he  
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Orig ina l ly ,  t h e  cy l inder  has  rad ius  Ro and ha l f  l ength  Lo, with t h e  

"corner" a t  P (Fig. 2.la). This f i g u r e  shows only one quar te r  of t h e  

cylinder.  Later, when the  expansion has  proceeded f o r  some t i m e ,  t h e  

escape f ron t  ( ac tua l ly  a surface) w i l l  have a shape as in  Fig. 2.lb. 

It i s  i n t e r e s t i n g  t o  note tha t  t h e  corner o r i g i n a l l y  a t  P w i l l  now be 

a t  Q and w i l l  s t i l l  be sharp s ince  it  i s  formed by t h e  i n t e r s e c t i o n  

of t h e  r a d i a l  and axial r a r e f a c t i o n  f ronts .  A p i c t o r i a l  drawing of 

t h e  e n t i r e  c y l i n d r i c a l  gas cloud a f t e r  t h e  expansion has proceeded f o r  

some time i s  shown i n  Fig. 2.2 below. 

The Shape of An Expatldiq 
Cyl indr ica l  Gas Cloud 

Figure 2.2 

From t h i s  model, i t  is clear t h a t  t he  c y l i n d r i c a l  co-ordinate 

system is w e l l  su i t ed  f o r  numerical so lu t ion  of t h i s  problem, s ince  

t h e  flow i s  axisymmetric. It was found, however, t h a t  i t  was more convenient 
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t o  s p l i t  the flow f i e l d  i n t o  two regions and t o  use a d i f f e r e n t  co- 

ordiria t e  sys tern f o r  each region. 

For the  regions A, B and C, of Fig. 2 . 1  the cy l ind r i ca l  co- 

ord ina tes  r and 2 w e r e  used, where r i s  the  r a d i a l  d i s tance  from the  

a x i s  of the cyl inder  and % i s  t he  d is tance  along the a x i s  from the 

center.  

1 
I 

I I 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

-_I___ 1-- . .- 

Lo 

Figure 2 . 3  

On the o the r  hand, region D ( the quar te r - toro ida l  volume 

commencing a t  P)  was found t o  be more conveniently analyzed using 

co-ordinates R and 8 as shown i n  Fig. 2 .3 .  I t  i s  seen t h a t  the sur -  

faces ,  R = constant ,  generate t o r i  with the common center l i n e  P of 

radius  Ro. 

on the  a x i s  of the  cylinder.  For brev i ty ,  t h i s  la t ter  co-ordinate 

The sur faces  8 = constant generate cones whose apexes l i e  



I . 
- 9 -  

I .  

system w i l l  be r e fe r r ed  t o  here as the  " toral"  co-ordinate system 

(not t o  be confused with the  well known and qu i t e  d i f f e ren t  t o r o i d a l  

co-ordinate system). 

i l l u s t r a t e d  i n  Fig. 2.4. 

The general  t o r a l  co-ordinate system i s  

I 

The Toral Co-ordinate System 

Figure 2.4 

The basic  equations 2.6 and 2.3 ctm ~ Q W  be wr i t t en  i n  terms of 

c y l i n d r i c a l  and t o r a l  co-ordinates. 

a) 

Let  u and v be the components of the  p a r t i c l e  v e l o c i t i e s  i n  the  

a x i a l  and r a d i a l  d i rec t ions  respect ively.  Then, i n  component form, 

C y l  indr  i c  a1 Co- o r  dinat  e s : 
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Eqs. 2.8 and 2.9 become: 

I ,  

I 

(2.11) 

(2.12) 

The above equations have been used everywhere in the flow field 

except in the part designated as Region D in Fig. 2.1b. For Region D 

the equations are written in terms of toral co-ordinates. 

b) Toral Co-ordinates: 

Referring to Figure 2.3, the transformation for a point P' from 

cylindrical to toral co-ordinates is 

r -  R, + R s k @  

Z = L, + Q c o s @ .  
(2.13) 

The partial derivatives & and h in terms of toral co-ordinates are 
ar bt 

3 -  a R  2 + -  a@ a a5 - 2F B R  ar a@ (2.14) 

a = as  2 + &  2 .  at St  3 R  3 2  2s 

From Eqs. 2.13, one obtains 

Using Eq. 2.16, Eqs. 2.14 and 2.15 become: 

(2.15) 

(2.16) 

(2.17) 
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Substituting Eqs. 2.17 into Eqs. 2.10, 2.11, and 2.12, the conservation 

equations become: 

MOMENTUM CONSERVATION in the f direction: 

MOMENTUM CONSERVATION in the direction: 

(2.19) 

2.3 Initial and Starting Conditions 

Based on the physical model described in Section 1, the initial 

conditions of the cylindrical gas cloud are: 
-., 

a = a,, V = D  for 2 4 ~ ,  r d  % 
4 

and Q =  0, v = Oelsewhere 

at time t = 0. 

Since initially, the density of the cylindrical gas cloud is uniform, 

the gradient of the sound speed "a" is infinite at the boundary i t =  Lo 

and r = &. It is therefore not possible to start the numerical inte- 

gration of Eqs. 2.10 to 2.12 with these initial conditions. 
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The expansion of the gas cloud for the first time increment, 

however, may be approximated by a planar solution, since in the 

3 -direction, this is actually the case, and in the r-direction, 
such an approximation led to satisfactory results in a previous study 4 . 
In addition, the singularities which exist at the corner of the cylin- 

der can be eliminated by assuming that the corner possesses a small 

radius of curvature. The curvature effects, even in the corner region, 

can be neglected, since it was previously found4 that the overall flow 

field is rather insensitive to the starting conditions. These starting 

conditions at the first time increment may now be found. 

Because of these considerations, the initial cloud geometry was 

It was assumed to be of radius % +a,& and half slightly modified. 

length L, +(&,A with corners of radius of curvature of Q,A . 
small time interval A has elapsed, the flow field will be as shown in 

After a 

Fig. 2.5. 

Figure 2.5  
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The radial expansion in region A was treated as planar similar to 

the axial expansion in region C during the small time interval A . 
distributions of the particle velocity and the sound speed with radial 

and axial distances after the expansion has proceeded for a time t = 

can be obtained readily by the method of characteristics as described 

in Ref. 4. They are: 

The 

for 
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For smooth transition from region A to region C, the starting conditions 

in the corner region D were assumed to be identical to those in regions 

A and C as given by Eqs. 2 . 2 1  and 2 . 2 2 .  This assumption guaranteed a 

matching of the flow variables in all three regions. 

ordinates, the starting condition for region D can be written as 

In toral co- 

( 2 . 2 3 )  

It is seen that when 8.x and , Eqs. 2 . 2 3  reduce to Eqs. 2.21 or 

2 .22  or regions A and C respectively. 
21 

With the starting conditions now 

determined, (Eqs. 2 . 2 1 ,  2 .22  and 2 . 2 3 )  the basic conservation equations 

(Eqs. 2.10 to 2.12  and Eqs. 2.18  to 2 . 2 0 )  can be integrated numerically 

by a finite difference scheme. 

2 . 4  Selection of the Mesh 

For the finite difference numerical calculation, the expansion 

flow field was replaced by a mesh of lattice points as shown in Fig. 2 . 6 .  

Except in region 9, a "square" grid with mesh size h was used. 
"circular" grid was devised for region D as shown in Fig. 2 . 6 .  In this 

region, the mesh point (i,j) is given by the toral co-ordinates 

A 

( 2 . 2 4 )  
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r 

Figure 2 . 6  

With the choice of mesh as given by Eqs. 2 . 2 4 ,  bR=: h and R A e  =n_h 
so that the same form of difference equation applied everywhere in the 

2 

toral region. 

2 . 5  The Difference Equations 

For the square mesh region (See Fig. 2.6) the partial derivatives of 

a flow variable f(r, E, t) were approximated by the following centered 
differences: 
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(2.25) 

(2.26) 

Substitution of Eqs. 2.25, 2.26 and 2.27 into the basic equations 

(Eqs, 2.10, 2.11 and 2.12) resulted 
+ of the properties at the new time c 

the previous time t . 

in explicit forms for the solutions 

+Atin terms of the properties at 

In the toral region D, the derivatives of a property c at the mesh 
point (i,j) were taken to be: 

(2.29) 

By substituting the above equations into the basic equations 

(Eqs. 2.18, 2.19 and 2.20), explicit relations were obtained for the 

determination of the flow variables at the next time step. 

Since a perfect gas with '6 = 3 was assumed throughout the present 
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study, both the escape front and the head of the rarefaction front 

propagate at the same velocity, equal to the initial undisturbed sound 

speed a,. To ensure stability, the space-time mesh ratio was taken as6: 

h = a , *  
At 

(2.31) 

It should be mentioned that the choice of the toral mesh was 

partially dictated by stability conditions. From Eqs. 2.24  and 2.31, 

which satisfy the stability requirements. From E q .  2.31, one readily sees 

that with each time step, new rows of mesh points lie on the new escape 

and rarefaction fronts. This simplifies the numerical calculations. 

Referring to Fig. 2.6, where the meshed region (including region D) 

represents the entire flow field at any instant of time, it can be seen 

that the only part of the flow field containing two-space dimensional 

effects is the area bounded by the lines QN', QM' and the escape front 

N'NMM'. This is the region where the interaction of the radial and 

axial rarefaction waves occurs. 

dimensional cylindrical expansion while region QTUM' is a one-dimensional 

planar expansion investigated previously . 

The region QN'SR is a purely one- 

4 
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3 . 0  RESULTS AND DISCUSSION 

Whether the axial or radial rarefaction dominates the overall 

expansion of the cylindrical gas cloud depends on the geometry of the 

cloud itself (i.e. the ratio %/LO). For example, the expansion of a 

cylindrical cloud with R O / h  > 1 will be mainly axial, while for %/b<L, 

the expansion will be mainly radial. 

performed for all three cases; 

cylinder 

Numerical computations have been 
R 

a long cylinder o/Lo = 1/2, a square 

= 1 and a short cylinder Ro/Lo = 2. 

All the numerical results presented in the present study are based 

4 \ on a value of 8 =  3 .  

d = 3 ,  the one-dimensional cylindrical expansion field of condensed 

aluminum processed by a strong shock of density ratio f i  = 2 can be 

described accurately. Hence, in the present study of expansions involving 

two-space dimensions, numerical calculations using Tillotson's equation 

of state were not performed again, since the effect of the equation of 

state on the expansion flow field had already been determined in the 

previous work4 on one-dimensional expansion. 

advantages of the stepwise approach adopted in this study. 

In a previous study , it was found that using 

A 

This illustrates one of the 

For isentropic flow, two flow variables are sufficient for the 

complete determination of the flow field. 

sound speed Q, and the particle velocity v as the two flow variables. With 
The present study used the 

d 

the sound speed known, the density, pressure and internal energy can be 

found directly from the isentropic relationships 
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where rhe subscript 0 denotes the initial conditions. 

All the numerical results presented are in dimensionless form. 

The dependent variables Q ,  &, and Vare non-dimensionalized with 

respect to a,. 
dimensionalized as follows: 

The independent variables t , r ,  and t are non- 

For R, 4 I 

I -  

where the primed quantities have dimensions. 

-L 

The variation of the sound speed a and the particle velocity v 
with radial and axial distances at different times for the three 

geometries (i.e. R ~ / b (  1, %/Lo = 1, and %/~,>1) are given in 

Figs. 3.1 to 3.12. 

Due to the two-dimensional geometry of the gas cloud, it is diff- 

icult to make meaningful quantitative comparisons between the present 

results and those obtained previously for purely planar, cylindrical 

and spherical expansion. However, on a qualitative basis, the inter- 
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action of radial and axial rarefaction waves can be demonstrated by 

the shapes of the various sound speed profiles. For example, at all 

times the distribution of the sound speed for one-dimensional planar 

expansions are monotonic functions of the space variable "x", decreasing 

smoothly from its value at the cenkr line to zero at the escape front. 

Referring to Fig. 3.9, where the distributions of the sound speed along 

the axis for a short cylinder (%/L, = 2) at various times are shown, 

one can see that before the effect of the radial expansion is "felt" at 

the 3 axis, the sound speed a decreases monotonically from its value at 
the center to zero at the escape front, identical to the one-dimensional 

planar expansion case. 

material is escaping in a radial direction as well as in the axial 

direction. 

profiles near the center of the gas cloud as shown in Fig. 3.9. 

the rate at which mass is escaping is higher for radial rarefactions 

than for axial rarefactions, an anomalous "bump" is developed in the 

density profiles which finally smooths out at large times. 

As the radial rarefaction waves reach the 2 axis, 

This results in a flattening of the sound speed (or density) 

Since 

The effect of the interaction between radial and axial rarefaction 

waves on the center line distributions are qualitatively similar for all 

R Ro/ < 1, O/Lo = 1 and %/L, > 1). A the three cases studied (i.e. 

comparison of the axial density profiles for the three cases at a value 

of t when the axial escape front has traversed a distance of zLois 
shown in Fig. 3.13. 

Lo 

The higher rate of %mss ejection'' by the radial 

rarefactions in the case of %/ < 1 is demonstrated by the much more L, 
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R rapid density and speed of sound decay in the case of O / b  = 1/2. 

Due to the two-dimensional nature of the present problem, the 

interaction of radial and axial rarefaction waves cannot be effectively 

demonstrated by the center-line distribution shown in F i g .  3.1 to 3.12, 

and a two-dimensional plot is required. In Fig. 3.14, constant sound 

speed contours (or constant density contours since for '6 = 3, a =p)  
for a square cylinder are plotted at that instant of time when the 

escape front has moved a distance of 2R0. 

is shown as a dotted line and the density profiles through three sections 

of the expansion field are also plotted. 

can be made from Fig. 3.14. 

the escape front is extremely low and changing density slowly, the 

boundary of the expanding cloud shown In the shadowgraphs obtained 

experimentally by the Beckman-Whitley high speed framing camera is 

probably that of the higher-density contours. 

of an expanding cloud is shown in Fig. 3.15 and as can be observed, the 

cloud boundary is similar to thst of the .OL or .04 constant density 

contour of Fig. 3.14. 

expanding cloud as observed experimentally is compatible with the 

theoretical prediction given here. 

The shape of the escape front 

'ho interesting observations 

Because the density of the material near 

A typical shadowgraph 

This indicates that the particular shape of the 

Another interesting observation is the non-uniform change of 

density in the expansion field which results from the interaction of 

radial and axial rarefaction waves. 

expansion, the density decreases uniformly from the center of the cloud 

(For purely one-dimensional 
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to the escape front.) 

produce the ring-shaped indentations which have been observed on 

a witness plate downstream of the bumper. 

This non-uniform density variation could 

The mass distribution profile in the radial direction through 

section BB as shown in Fig. 3.14 clearly indicates that a concen- 

tration of mass exists near the periphery of the cloud. 

The direction and the magnitude of the particle velocity on a 

particular surface in the expanrion field for a square cylinder 

( R O / ~  = 1) and a short cylinder (%/LO \ 1) are shown in Figs. 3.16 

and 3.17 respectively. 

ticle velocity gradually changes from the axial direction on the z 
axis to the radial direction on the r a x i s ,  while its magnitude is 

almost constant along the surface. 

the fact that the density variation is non-uniform, the mass flow from 

the expanding cylinder is almoot symmetrical with respect to its original 

shape, 

An can be seen, the direction of the par- 

This indicates that, in spite of 
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4.0 CONCLUDING REMARKS 

Perhaps the most important conclusion that can be drawn from the 

results of the present study is that the initial geometrical shape of 

the gas cloud strongly influences the resultant expansion field. Due 

to the different rates of expansion in the radial and the axial direction, 

a non-uniform distribution of mass occurs in the expanding cloud. 

non-uniformity cannot be explained by purely one-dimensional consid- 

erations. In spite of the simplicity of the present physical model, 

the results shed considerable light on some of the experimental obser- 

vations made as previously discussed. 

This 

The present development could be refined by removing the approx- 

imation made in determining the starting conditions as described in 

Section 2.3. 

of the effect of starting profiles on the subsequent flow field at later 

times and would be of interest to future studies of hypervelocity impact 

problems involving three space variables. Also, the study of the inter- 

action of spherical and cylindrical rarefactions by considering the 

expansion of a cylinder with hemi-spherical ends and the expansion of 

gas clouds of arbitrary shapes is not only of aczdemic interest, but also 

of practical interest in the study of end-on and oblique impacts of 

pellets of arbitrary shape. 

Such an investigation would provide quantitative results 
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FIG. 3.15 SHADOWGRAPH OF AN EXPANDING GAS CLOUD 
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